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Abstract
Convolutional neural networks (CNN) have achieved significant
success in various domains, e.g., image recognition, however, de-
ploying CNN on resource-constrained devices remains challenging
due to their high computation demands and large memory require-
ments. In this paper, we propose an approach for structured pruning
of CNN using genetic algorithms, specifically focusing on channel
pruning. The pruning process often results in a loss of accuracy,
requiring retraining techniques to recover the network’s accuracy
to its original level. We integrate knowledge distillation into the
retraining process to recover the model to a similar accuracy within
fewer epochs. The experimental results show that our approach
successfully reduces the amounts of parameters by 91.02% and com-
putation demands by 90.96%, with a 1.82% decrease in accuracy only
for a gesture recognition model with over 30 million parameters.
The results demonstrate that our approach significantly reduces
the computation of the model without dramatically decreasing its
accuracy.
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1 Introduction
In recent years, Convolutional Neural Networks (CNN) [22] have
shown remarkable success and advancements in various domains,
such as image recognition, object detection, and autonomous driv-
ing. These advances improve the performance of applications in
these domains. With the widespread application of deep learning
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in various fields, the complexity and size of the model have gradu-
ally increased, significantly raising the demand for computational
resources. However, the effectiveness of CNN often comes with a
requirement of extensive computational resources due to their large
number of parameters and deep layers [7]. Deploying large-scale
models on resource-constrained embedded or mobile devices be-
comes a challenge, especially for applications with strict constraints
on inference time and power consumption. For instance, headsets
in AR/VR application require real-time processing capabilities to
ensure user experience, while mobile devices have limited battery
life. Hence, it is critical to reduce model size and computation to
minimize computation, power consumption, and inference time.
To address this challenge, many researchers have explored various
techniques to make these models smaller [2], [8], [24], [31], [38].
One of the approaches is model pruning, which reduces the model
size without significantly affecting its accuracy. Han [8] introduced
an unstructured pruningmethod, demonstrating a significant reduc-
tion in the number of parameters without dramatically degrading
the accuracy. However, Liu [24] proposed a structured pruning
method by pruning the entire filter in a convolutional layer, which
was proved to be more hardware-friendly. He [12] further intro-
duced a channel pruning method that reduces the computation
requirement of model through an iterative pruning and retraining
strategy. Additionally, Luo [26] proposed ThiNet method, which
considers the importance of each channel and improves the pruning
efficiency. To recover from the possible accuracy drop after pruning,
retraining is a common used technique. Fine-tuning (FT) [8] is a
conventional method that involves retraining the pruned network
using the minimum learning rate in the training schedule of the
original network. Another retraining technique, known as learning
rate rewinding (LRW) [32], adopted the training schedule of the
original network and set its retraining schedule based on the last
few epochs. LRW demonstrates a better accuracy compared to the
FT. Despite the advancements in pruning techniques, finding a good
balance between model size and accuracy remains a challenge, par-
ticularly for real-time applications on resource-constrained devices.
The challenge is how to reduce the model size while maintaining
its accuracy.

In this paper, we propose a hybrid approach that integrates
genetic algorithm with channel pruning and retraining with knowl-
edge distillation (RKD). Channel pruning is a structured pruning
method that reduces the model size by removing unimportant chan-
nels, thus reducing inference time and power consumption on edge
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Figure 1: Average inference time of the original and unstructured
pruned R(2+1)D-18 model on the EgoGesture dataset for hand ges-
tures running on the HoloLens headset.

devices. Then, we integrate knowledge distillation into retraining
process to elevate the accuracy of this pruned model. Our approach
takes a well-trained model as input and returns an optimized model.
We apply our approach to a gesture recognition model containing
over 30 million parameters. The experimental results show that our
approach can significantly optimize the model.

2 Preliminaries
2.1 Neural Network Pruning
Neural network model pruning can be categorized into two types:
unstructured pruning and structured pruning. Unstructured prun-
ing [8], [15], [34] usually sets the weights of edges with small
magnitude to zero, hence effectively eliminating network computa-
tion. Unstructured pruning significantly reduces the total number
of parameters within the network. However, since the positions of
weights to be pruned in the unstructured pruning are arbitrary, this
method requires special support in hardware to achieve model size
reduction. On the other hand, structured pruning [11], [25], [36]
removes the entire kernels, channels, or layers based on predeter-
mined rules. This pruning method makes it easier to achieve model
reduction because it maintains an organized network architecture,
which loosens the computation requirements. Structured pruning
is often preferred in practice because it is compatible with existing
hardware and is easier to deploy in various applications.

Both pruning methods aim to reduce the complexity of model,
but they have different impacts on hardware acceleration. For ex-
ample, for the CPU on the HoloLens [27], an unstructured pruning
model requires almost the same inference time as the original one,
even 80% of parameters are removed, as shown in Figure 1. There-
fore, a good pruning approach should focus on structured pruning,
physically reducing the number of channels or filters in convolu-
tional or fully-connected layers.

2.2 Channel Pruning
Channel pruning is a type of structured pruning that focuses on
reducing the number of channels in convolutional layers. This ap-
proach aims to reduce the computation and memory usage of CNN
models by eliminating less important channels. Channel pruning
usually involves evaluating the importance of each channel and
removing those that contribute the least to the network. The im-
portance of a channel can be measured using various criteria, such
as L1 [21], [24] or L2 norm [30], or the Taylor Expansion [28]. For
example, He [12] introduced an iterative two-step algorithm to
prune channels in CNN model for reducing the computational cost

of neural networks. In this work, we utilize the Taylor Expansion
[28] to calculate the importance of the channel.

2.3 Genetic Algorithm
Genetic algorithm (GA) is a search algorithm that imitates the
principles of natural evolution. GA mimics the process of natural
selection by choosing the most suitable individual from a pop-
ulation to generate offspring in the next generation. It employs
biological-inspired mechanisms such as mutation, crossover, and
selection to evolve a population of solutions toward an optimal
configuration. GA has been effectively used to approximate logic
synthesis problems [23]. In model pruning, the goal is to find a
pruning strategy that balances the accuracy and size of model.

In this work, we apply GA to identify the most effective pruning
strategy for our neural network models, leveraging their ability
to explore optimal solutions, as illustrated in Figure 2. The ability
of GA to explore multiple solutions and optimize multiple goals
simultaneously allows it to balance the model size and accuracy. We
first generate an initial population and evaluate the fitness value
of each solution. Within the predefined number of generations,
the solutions undergo crossover and mutation. Then, we select
the solutions that perform well in the population to generate new
solutions. These steps repeat until the termination condition is met,
and the optimal solution is obtained.

Figure 2: The flow of genetic algorithm.

2.4 Knowledge Distillation
Knowledge distillation [10], [13] is a technique in machine learning
that utilizes the soft probabilities (or “logits”), produced by a larger,
more complex model known as the “teacher network”, to supervise
and enhance the training of a smaller, simpler model called the
“student network”. This model compression strategy allows the stu-
dent model to learn detailed information beyond what is available
through labels, enhancing the learning process. Additionally, trans-
fer learning can be integrated by pre-training the student model on
a different but related task before it learns from the teacher model.
This pre-training aids in developing a proper feature representa-
tion, significantly improving the student model’s performance and
efficiency. By transferring knowledge from the teacher model to the
student model, the student model can achieve comparable perfor-
mance while requiring less computational overhead and memory,
making it more efficient for deployment in resource-constrained
environment.

2.5 Retraining Techniques
Pruning could lead to a drop in the model’s accuracy. Retraining
can be used to recover the accuracy by allowing the remaining
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parameters to be adjusted to the pruned architecture. There are
several techniques used to retrain the networks to regain accuracy.

(1) Fine-Tuning: Fine-tuning (FT) [8] involves retraining the
pruned model on the original dataset with a lower learning rate.
This helps regain the accuracy lost during the pruning process by
allowing the remaining weights to be adjusted for compensating
the removed parameters. (2) Learning Rate Rewinding: Learning
Rate Rewinding (LRW) [32] involves retraining the pruned model
using an initial learning rate schedule from an earlier epoch, allow-
ing the model to retrace its training steps and regain the accuracy
lost from the pruning. This method starts with a large learning rate
for several epochs, then applies progressively smaller learning rates
for additional epochs, which adjusts the model more effectively.
Compared to fine-tuning, which uses a lower learning rate to re-
train the pruned model, LRW can offer better accuracy recovery
by leveraging the dynamics of the original learning rate schedule,
making it a potentially superior approach.
3 Proposed Approach
3.1 Genetic Algorithm
When GA is applied to model pruning, solutions to the problem
are encoded, and named chromosomes, typically represented as
strings. However, when the model contains tens of millions of
parameters, the representation will become large, leading to an
excessive computation and storage burden. In this work, we propose
an efficient GA-based method to deal with this issue. The following
contents will explain the principles and steps of the GA used in this
work.

3.1.1 Initialization. A CNN model is composed of multiple layers,
with each layer containing a certain number of channels. For a
given CNN model, suppose that the model contains 𝑁 layers, the
channel number distribution can be expressed as EQ(1),

ChannelCounts = [channel1, channel2, . . . , channel𝑁 ] (1)

where 𝑐ℎ𝑎𝑛𝑛𝑒𝑙𝑖 is the number of channels in each 𝑙𝑎𝑦𝑒𝑟𝑖 .
In ourwork, each individual (chromosome)within the population

is represented as a unique pruning vector. A pruning vector consists
of elements, where each element represents a pruning ratio for a
corresponding layer in the CNN. These ratios determine how many
channels in a layer are pruned. This representation of chromosome
can be expressed as EQ(2),

𝑃𝑖 = [pruned𝑖,1, pruned𝑖,2, . . . , pruned𝑖,𝑗 , . . . , pruned𝑖,𝑁 ] (2)

where 𝑃𝑖 represents a pruning vector for the 𝑖th individual, and
pruned𝑖, 𝑗 representes the pruning ratio (gene) for the 𝑖th individual
in 𝑙𝑎𝑦𝑒𝑟 𝑗 .
Example 1: Consider a CNN model with three layers, assume
that each layer has 128, 64, and 256 channels, respectively. Hence,
ChannelCounts = [128, 64, 256]. Assume that a pruning vector is
represented as [0.2, 0.32, 0.55], indicating that 20% of the channels
in 𝑙𝑎𝑦𝑒𝑟1, 32% of the channels in 𝑙𝑎𝑦𝑒𝑟2, and 55% of the channels in
𝑙𝑎𝑦𝑒𝑟3 are pruned.

To determine the pruning ratio in the pruning vector, we combine
an initial pruning ratio (Initial_Pruning_Ratio 𝑗 ) with a noise factor
(NF𝑖, 𝑗 ), which is used to increase the variability of the pruning ratio.
The formula for computing the pruning ratio for each 𝑙𝑎𝑦𝑒𝑟 𝑗 in the
𝑖th individual is as shown in EQ(3),

pruned𝑖,𝑗 = Initial_Pruning_Ratio 𝑗 + NF𝑖,𝑗 (3)

where pruned𝑖, 𝑗 is the pruning ratio of 𝑙𝑎𝑦𝑒𝑟 𝑗 in the model. NF𝑖, 𝑗
represents a noise factor derived from a uniform distribution for
the 𝑖th individual in 𝑙𝑎𝑦𝑒𝑟 𝑗 , which ranges [-0.2, 0.2].

We use a strategy that considers the amount of channels in each
layer to determine the pruning ratios. That is, allowing layers with
more channels to have a larger pruning ratio. This is because layers
with more channels could tolerate more pruning without causing
detrimental effects on model’s accuracy. The initial pruning ratio
for each layer in the individual is set using a formula in EQ(4),

Initial_Pruning_Ratio 𝑗 =
(
1 − 𝑒−𝜆×

𝑐ℎ𝑎𝑛𝑛𝑒𝑙𝑗
𝜅

)
(4)

where 𝜅 and 𝜆 are user-defined parameters, and 𝑐ℎ𝑎𝑛𝑛𝑒𝑙 𝑗 is the
number of channels in 𝑙𝑎𝑦𝑒𝑟 𝑗 .

Combining EQ(3) and EQ(4), the pruning ratio for each 𝑙𝑎𝑦𝑒𝑟 𝑗

in the 𝑖th individual is as EQ(5):

pruned𝑖,𝑗 =
(
1 − 𝑒−𝜆×

𝑐ℎ𝑎𝑛𝑛𝑒𝑙𝑗
𝜅

)
+ NF𝑖,𝑗 (5)

The initial population consists of multiple individuals, each is
characterized by a distinct pruning vector. The initial population
can be expressed as EQ(6),

Init = [𝑃1, 𝑃2, . . . , 𝑃𝑀 ] (6)

where𝑀 is the total number of individuals in the population, and
each 𝑃𝑖 represents the pruning vector for the 𝑖th individual.

3.1.2 Crossover. The crossover operation is a critical step in gener-
ating new offspring. In our work, we employ two methods: Uniform
Crossover [33] and Arithmetic Crossover [18]. With this idea, we
expect that the offspring can inherit different characteristics from
parents, which promotes genetic diversity.

In Uniform Crossover, each pruning ratio in the pruning vector
is randomly chosen from one of the two parents with the same
probability. For each gene in the chromosome, a random decision is
made based on a predefined selection_rate. If the random number,
𝑟𝑎𝑛𝑑𝐶 , is less than selection_rate, the gene is selected from the first
parent, say Pi ; otherwise, it is inherited from the second parent, say
Pj . The operation can be formulated as EQ(7),

𝑝𝑟𝑢𝑛𝑒𝑑
Offspring
𝑖,𝑗

=

{
𝑝𝑟𝑢𝑛𝑒𝑑

Pi
𝑖,𝑗
, if 𝑟𝑎𝑛𝑑𝐶 < selection_rate

𝑝𝑟𝑢𝑛𝑒𝑑
Pj
𝑖,𝑗
, otherwise

(7)

Arithmetic Crossover uses a weighted average of the correspond-
ing genes from two parents. The weight, 𝑟 , is determined by a ran-
domly generated ratio, ensuring that each parent contributes partial
genes to the offspring. The gene of the offspring is calculated by
weighting the corresponding parent genes 𝑃𝑖 and 𝑃 𝑗 . The equation
is as EQ(8).

𝑝𝑟𝑢𝑛𝑒𝑑
Offspring
𝑖,𝑗

= 𝑟 · 𝑝𝑟𝑢𝑛𝑒𝑑Pi
𝑖,𝑗

+ (1 − 𝑟 ) · 𝑝𝑟𝑢𝑛𝑒𝑑Pj
𝑖,𝑗

(8)

Both crossover methods help maintain genetic diversity within the
population, which is essential to avoid getting stuck in a local opti-
mal point, and ensure a comprehensive exploration of the pruning
space. In our work, we split our population into two groups. One
uses Uniform Crossover, and the other uses Arithmetic Crossover.

3.1.3 Mutation. The mutation is an operation used to increase
genetic diversity of the population and prevent convergence to a
local optimal point. With the changes in the pruning ratio, mutation
helps explore new regions of the solution space and aids in search-
ing the global optimal point. In our approach, the probability of
mutation is determined by a predefined parameter𝑚𝑢𝑡𝑎𝑡𝑖𝑜𝑛_𝑟𝑎𝑡𝑒 .
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Figure 3: RKD Schematic Diagram.

For each pruning ratio in the pruning vector, the mutation is per-
formed or not based on this probability. For each layer of each
individual, we first generate a random number 𝑟𝑎𝑛𝑑𝑀 . If 𝑟𝑎𝑛𝑑𝑀 is
less than𝑚𝑢𝑡𝑎𝑡𝑖𝑜𝑛_𝑟𝑎𝑡𝑒 , the 𝑝𝑟𝑢𝑛𝑒𝑑𝑖, 𝑗 for this layer is modified by
EQ(9),

𝑝𝑟𝑢𝑛𝑒𝑑 ′
𝑖,𝑗

= 𝑝𝑟𝑢𝑛𝑒𝑑𝑖,𝑗 +𝑚𝑢𝑡𝑎𝑡𝑖𝑜𝑛_𝑓 𝑎𝑐𝑡𝑜𝑟
if 𝑟𝑎𝑛𝑑𝑀 <𝑚𝑢𝑡𝑎𝑡𝑖𝑜𝑛_𝑟𝑎𝑡𝑒 (9)

where 𝑝𝑟𝑢𝑛𝑒𝑑′
𝑖, 𝑗

and 𝑝𝑟𝑢𝑛𝑒𝑑𝑖, 𝑗 denote the mutated pruning ratio
and the original pruning ratio of the 𝑙𝑎𝑦𝑒𝑟 𝑗 in the 𝑖th individual,
respectively. 𝑚𝑢𝑡𝑎𝑡𝑖𝑜𝑛_𝑓 𝑎𝑐𝑡𝑜𝑟 is a constant that determines the
magnitude of change.

3.1.4 Fitness Function. The fitness function evaluates the quality
of each individual within the population, aiming to optimize CNN
model by balancing three key aspects: accuracy, model size, and
computation. In our work, we pursue to achieve a high accuracy
while minimizing the amount of operations and size of the model.
The fitness value for each individual is calculated as EQ(10),

𝐹𝑖𝑡𝑛𝑒𝑠𝑠 𝑣𝑎𝑙𝑢𝑒 = 𝛼 · 𝐴𝑐𝑐 + 𝛽

log( |𝑃𝑎𝑟𝑎𝑚 | ) + 𝑟

log( |𝐹𝐿𝑂𝑃 | ) (10)

where 𝐴𝑐𝑐 represents the accuracy of the model, |𝑃𝑎𝑟𝑎𝑚 | is the
number of parameters in the model, and |𝐹𝐿𝑂𝑃 | [14] denotes the
number of floating-point operations in the model during compu-
tation. 𝛼 , 𝛽 , and 𝛾 are weights used to adjust the magnitude of
influences about the accuracy, the model size, and the amount of
operations. The setting of these weights reflects the importances of
these key aspects in the final model.

3.1.5 Selection. The individual with a higher fitness value will be
retained in the selection process for the next generation, ensuring
that only the best-performing individuals survive in the evolution
process of GA. We rank all the individuals by their fitness values
and retain the top half for the next generation. The population of
the retained individuals 𝐼𝑐𝑢𝑟𝑟𝑒𝑛𝑡 can be represented as EQ(11):

𝐼𝑐𝑢𝑟𝑟𝑒𝑛𝑡 = [𝑃1, . . . , 𝑃𝑀
2
] (11)

After the process of the GA, the best-performing individual in
the process is referred to as 𝑃best, which will be utilized for pruning
the model based on the importance of the channel.

3.2 Retraining with Knowledge Distillation
(RKD)

The state-of-art retraining methods, like LRW [32] or FT [8], focus
on minimizing the loss solely between the predicted outputs and
the target labels. This loss, typically computed as a measure of
the discrepancy between the model’s predictions and the actual

outcomes, often utilizes methods such as mean squared error [1]
or cross-entropy [17], depending on the specific task. However,
these methods do not leverage the output information from the
original model during the retraining process, and lead to inefficien-
cies. Especially, treating all negative labels identically disregards
the varying degrees of relevance, or information these labels might
carry in the original model’s context. To address this issue, we
propose to incorporate the technique of knowledge distillation in
the retraining process. Knowledge distillation utilizes the original
model’s output to guide the retraining of the new model, ensuring
that the subtleties and insights embedded in the negative labels
are not lost. This enhances the learning process by reducing the
prediction error in terms of the direct loss between outputs and
target labels. It also preserves and transfers the subtle distinctions
learned by the original model to the retrained model.

As shown in Figure 3, we set the original model as the teacher
model and the pruned model as the student model. The overall
loss function is divided into two components. The first component,
depicted in EQ(13) and corresponding to the right half of Figure 3,
employs the Kullback-Leibler divergence (KL_div) [20], to assess
and minimize the disparity between the softened output proba-
bilities of the student and teacher models. This technique, which
involves a "temperature" parameter𝑇 , enables the student model to
approximate the complex behavior of the teacher model by adopt-
ing its probability distribution. The temperature 𝑇 in the softmax
function adjusts the sharpness of the output probability distribu-
tion, helping the student model to learn more effectively from the
teacher’s output. The second component, outlined in EQ(12) and
corresponding to the left half of Figure 3, aligns with the approach
taken by previous works such as LRW [32]. It directly measures the
difference between the student model’s predictions and the actual
target labels using a traditional loss metric like cross-entropy, which
emphasizes precise prediction accuracy. The integration of these
two loss components through EQ(14), with an adjustable hyperpa-
rameter 𝛿 , allows for a balanced training regimen that not only aims
for direct adherence to the training data but also the absorption
of more profound, more abstract patterns from the teacher model,
thereby enhancing the student model’s ability.

Loss1 = Loss(Softmax(OutputStudent ),Target Label) (12)

Loss2 = 𝑇 2 × 𝐾𝐿_𝑑𝑖𝑣
(
Softmax

(
OutputStudent

𝑇

)
,

Softmax
(
OutputTeacher

𝑇

)) (13)

LossTotal = 𝛿 ∗ Loss1 + (1 − 𝛿 ) ∗ Loss2 (14)

As shown in EQ(15), the function 𝑇 (𝑒𝑝𝑜𝑐ℎ) describes how the
temperature parameter 𝑇 used in EQ(13), starts at 𝑇0 and decreases
linearly to 1 as the number of retraining epochs increases. 𝑒𝑝𝑜𝑐ℎ
represents the current epoch, and 𝐸 is the total number of epochs.
This dynamic adjustment of the temperature helps in controlling
the smoothness of the probability outputs and facilitates effective
knowledge transfer between the models.

𝑇 (𝑒𝑝𝑜𝑐ℎ) = 𝑇0 −
𝑇0 − 1
𝐸

· 𝑒𝑝𝑜𝑐ℎ (15)
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Figure 4: The overall flow of the proposed approach.

3.3 Overall Flow
Figure 4 shows the overall flow of our work. Given a well-trained
original model, we conduct an iterative optimization on the original
model by GA to find the 𝑃best. After identifying 𝑃best, we apply the
channel pruning, which involves removing entire channels of neural
networks based on their importance. We retrain the model with
the proposed RKD approach to enhance the accuracy after pruning.
Last, the pruned model will be returned.

4 Experimental Results
Our experiments were conducted using Python and the PyTorch
Library [6], [29]. The computing platform is Windows 10, equipped
with an Intel i5-13600 CPU, NVIDIA RTX 4090, and 64GB of RAM.
We utilize ResNet-32, ResNet-56 [9], and R(2+1)D-18 [35] in our
experiments. The R(2+1)D-18 model is designed for gesture recog-
nition in a video. In our experiments, we evaluated the proposed
approach by running the models for 10 to 20 generations. The pa-
rameters for GA are 𝜅 = 150 and 𝜆 = 0.2, which were used to
initialize the pruning vectors for each individual in the population.
The parameters 𝛼 = 1, 𝛽 = 4, and 𝛾 = 4 in the fitness function. The
parameters 𝛿 = 0.5, 𝑇0 = 20, and 𝐸 = 150 in the proposed RKD
approach.

4.1 R(2+1)D-18 on EgoGesture Dataset
For video-based applications, we employed the R(2+1)D-18 model
[35], which is designed for gesture recognition tasks. This model is
evaluated using the EgoGesture dataset [3], [37], which comprises
83 different hand gestures. The R(2+1)D-18 model utilized in our
experiments is enhanced through a self-distillation process, result-
ing in a configuration with four distinct classifiers, A, B, C, and
D. Each classifier corresponds to the different numbers of layers
and model sizes, allowing the selection of classifiers based on the
requirements in the problems. The performances of these four clas-
sifiers are different. The classifier D is the largest among them, but
is with the highest accuracy. As shown in Table 1, each classifier is
evaluated based on several indicators: accuracy (Acc), the number
of parameters (|Param|), the number of floating-point operations
(|FLOP|), and inference time (Inf. time) measured in ms. The re-
sults show that our pruned model significantly reduces |Param|
and |FLOP|, with a reduction of more than 90% across all classifiers.

This substantial reduction directly contributes to the reduction in
computation demands, as reflected by a decrease in inference time
ranging from 40% to 54%. While there is a decrease in accuracy, the
accuracy drop is relatively small, which indicates that the model sig-
nificantly maintains its accuracy, more than 90.00%, after pruning.
In particular, the classifier D achieves a more than 90% reduction
in both |Param| and |FLOP| with a 1.82% drop in accuracy only.

4.2 ResNet on CIFAR-10 and CIFAR-100
We also conducted our experiments on the ResNet-32 and ResNet-
56 models [9] using the CIFAR-10 and CIFAR-100 datasets [19]. We
trained our initial network using the hyperparameters specified in
[16]. In Table 2, the experimental results demonstrate the efficiency
of our approach. For CIFAR-10, our pruned models achieve sub-
stantial reduction in both |Param| and |FLOP| with acceptable loss
in accuracy. As compared with [4], [5], the accuracies of the two
pruned ResNet models are higher, and the reductions in |FLOP| are
even more significant. For CIFAR-100, although the accuracy of our
pruned ResNet-32 is slightly lower than that by [4], we achieve a
reduction in |FLOP| by 49.37%, which is larger than 41.50% by [4].
For ResNet-56, our pruned model reduces |FLOP| by 62.23% with a
0.35% drop in accuracy only. The pruned accuracy is comparable to
[5]. The significant reductions in both |Param| and |FLOP| highlight
the potential of our approach in resource-constrained applications
on mobile devices. Table 3 shows the results of applying different
retraining approaches to ResNet models on CIFAR-10 and CIFAR-
100 datasets. We evaluate the amounts of retraining epochs of our
approach against LRW [32]. For CIFAR-10, the results show that
our approach requires 75% epochs than LRW to achieve compara-
ble results. Specifically, our approach achieves a 0.72% and 0.39%
accuracy drop for ResNet-32 and ResNet-56, respectively, which is
similar to LRW. For CIFAR-100 dataset, similar trends are observed,
where our approach is consistently better than LRW in terms of
maintaining accuracies. Furthermore, our approach only requires
150 epochs to achieve the similar accuracy, while LRW uses 200
epochs to recover the accuracy. This result demonstrates the ef-
fectiveness of our approach, which not only preserves the model
accuracy but also accelerates the retraining process.

5 Conclusion
In this work, we propose an efficient approach to optimize CNN
models for resource-constrained devices, combining GA with struc-
tured pruning and a retraining method RKD. Initially, we utilize
GA to iteratively optimize the model, achieving a better pruning
solution. The pruned model is then efficiently retrained with RKD,
which decreases the amount of retraining epochs and accelerates
the accuracy recovery. The experimental results show that our
approach significantly reduces the amount of parameters and com-
putation in the model while maintaining the accuracy of the model.
Furthermore, our approach validates its performance on different
neural networks and datasets, demonstrating the practicality of
deploying CNN model on resource-constrained devices.
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Table 1: Performance comparison of original and pruned models of the self-distilled R(2+1)D-18 model.

Model Orignial Model Ours
Acc
(%)

|Param |
(M)

|FLOP |
(G)

Inf. time
(ms)

Acc
(%)

Acc↓
(%)

|Param |
(M)

|Param |↓
(%)

|FLOP |
(G)

|FLOP |↓
(%)

Inf. time
(ms)

Inf. time ↓
(%)

A 85.09 1.17 29.28 2.4 77.12 7.97 0.11 90.22 2.66 90.92 1.1 54.17
B 91.34 2.71 34.32 2.8 89.01 2.33 0.25 90.71 3.11 90.94 1.4 50.00
C 92.12 8.73 38.35 3.2 90.14 1.98 0.79 90.98 3.47 90.96 1.9 40.63
D 92.24 31.34 40.52 3.6 90.42 1.82 2.81 91.02 3.66 90.96 2.1 41.67

Table 2: Comparison of pruned ResNet on CIFAR-10 and
CIFAR-100.

Dataset Model Approach
Ori.
Acc
(%)

New
Acc
(%)

Acc↓
(%)

|Param|↓
(%)

|FLOP|↓
(%)

CIFAR-10
ResNet-32

[5] 92.63 91.02 1.61 - 41.50
[4] 92.63 92.14 0.49 - 53.20
Ours 92.89 92.17 0.72 50.43 58.14

ResNet-56 [5] 93.59 91.67 1.92 - 54.60
Ours 93.22 92.83 0.39 63.53 63.85

CIFAR-100
ResNet-32 [4] 70.28 69.44 0.84 - 41.50

Ours 69.94 68.88 1.06 43.06 49.37
ResNet-56 [5] 71.07 70.73 0.34 - 52.60

Ours 71.04 70.69 0.35 59.93 62.23

Table 3: Comparison of ResNet-32, ResNet-56 using different
retraining approaches.

Dataset Model
Ori.
Acc
(%)

|Param|↓
(%)

|FLOP|↓
(%) Approach

New
Acc
(%)

Acc↓
(%) Epochs

CIFAR-10
ResNet-32 92.89 50.43 58.14 LRW[32] 92.02 0.87 200

Ours 92.17 0.72 150
ResNet-56 93.22 63.53 63.85 LRW[32] 92.88 0.34 200

Ours 92.83 0.39 150

CIFAR-100
ResNet-32 69.94 43.06 49.37 LRW[32] 68.77 1.17 200

Ours 68.88 1.06 150
ResNet-56 71.04 59.93 62.23 LRW[32] 70.60 0.44 200

Ours 70.69 0.35 150
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